

A HIGH ANGULAR RESOLUTION VIEW ON Exoplanets and spots

Roxanne Ligi INAF - Osservatorio Astronomico du Brera

Marie Skłodowska-Curie/AstrofIT2 Fellow

PLATO Limb-Darkening Workshop

26-27 February 2019

- Different effects can perturb the determination of stellar parameters.
- The stellar diameter takes part of the determination of many stellar and planetary parameters.
- Many phenomenon perturb the determination of the stellar radius:
 - the limb-darkening \rightarrow to get a reliable radius
 - magnetic spots
 - granulation
- High angular resolution can be of great help on this story.

Solar-like star with no spot

 $T_{eff} = 5800 \text{ K}$

1. Create oifits with Aspro2

4T VEGA/CHARA at 656 nm, all baselines

Disk model: $\theta = 1 \text{ mas}$ (makes ~ 1.5 R_o at 14 pc, or ~ 1 R_o at 9.3 pc)

Solar-like star with no spot

 $T_{eff} = 5800 \text{ K}$

1. Create oifits with Aspro2

4T VEGA/CHARA at **656 nm**, all baselines

Disk model: $\theta = 1 \text{ mas}$ (makes ~ 1.5 R_o at 14 pc, or ~ 1 R_o at 9.3 pc)

2. Then inject in LITpro

Disk model \rightarrow 1.0± 2.2e-05 mas reduced $\chi^2 = 0.0001237$

R. Ligi - PLATO Limb-darkening Conference - Granada

Solar-like star with a spot

 $T_{eff} = 5800 \text{ K}$

1. Create oifits with Aspro2

4T VEGA/CHARA at **656 nm**, all baselines

Disk model: $\theta = 1$ mas (makes ~ 1.5 R_o at 14 pc, or ~ 1 R_o at 9.3 pc)

Spot model: 0.1 mas, T_{eff,s} = 4000 K

Solar-like star with a spot

 $T_{eff} = 5800 \text{ K}$

1. Create oifits with Aspro2

4T VEGA/CHARA at **656 nm**, all baselines

Disk model: $\theta = 1$ mas (makes ~ 1.5 R_o at 14 pc, or ~ 1 R_o at 9.3 pc)

Spot model: 0.1 mas, T_{eff,s} = 4000 K

2. Then inject in LITpro

Disk model → 0.93 ± 0.00158 mas makes 0.93 R_☉ @ 9.3 pc or 1.4 R_☉ @ 14pc reduced $\chi^2 = 0.7711$

R. Ligi - PLATO Limb-darkening Conference - Granada

Solar-like star with a spot

 $T_{eff} = 5800 \text{ K}$

- 1. Create oifits with Aspro2
 - **4T VEGA/CHARA** at **656 nm**, all baselines

Disk model: $\theta = 1 \text{ mas}$ (makes ~ 1.5 R_{\odot} at 14 pc, or ~ 1 R_{\odot} at 9.3 pc)

Spot model: **0.1 mas, T_{eff,s} = 4000 K**

Solar-like star with a spot

 $T_{eff} = 5800 \text{ K}$

- 1. Create oifits with Aspro2
 - **4T VEGA/CHARA** at **656 nm**, all baselines

Disk model: $\theta = 1$ mas (makes ~ 1.5 R_o at 14 pc, or ~ 1 R_o at 9.3 pc)

Spot model: **0.1 mas, T_{eff,s} = 4000 K**

2. Then inject in LITpro

2 disks model Disk1 \rightarrow 0.90167 ± 0.002 mas reduced $\chi^2 = 0.5951$

R. Ligi - PLATO Limb-darkening Conference - Granada

Closure Phases

GENERAL STATEMENTS

What does it mean?

- A simple fit does not seem precise enough to derive the angular diameter, if measurements at low V²
- It is very hard to distinguish between spotted and non spotted stars with the V² only
- There are other effects to be taken into account...

So, how to know if we measure a « realistic » diameter, or if it is over/under-estimated? (open question)

- Would need the closure phases, but often not possible
- Trust the residuals? But could be due to other effects.
- Rely on other activity markers? There are other indicators of stellar activity, but can we relate them to the measurement of the angular diameter?
- Still need to quantify the effect of the spot(s).

IMPACTS ON EXOPLANETARY PROPERTIES

• Direct impacts on **stellar parameters**:

Effective temperature :
$$T_{\rm eff,\star} = \left(\frac{4 \times F_{\rm bol}}{\sigma_{\rm SB} \theta_{\rm LD}^2}\right)^{0.25} \rightarrow L_{\star} = 4\pi d^2 F_{\rm bol}$$

Other parameters through stellar evolution models: M_{\bigstar} , age $_{\bigstar}$...

• Linked to **exoplanetary properties**:

Habitable Zone (HZ) (Jones et al. 2006) $\propto L_{\star}/T_{eff,\star}^2$

Stellar mass: $M_{\bigstar} = (4\pi/3)R_{\bigstar}^{3}\rho_{\bigstar}$ so planetary mass $m_{\rm p}\sin(i) = \frac{M_{\star}^{2/3}P^{1/3}K(1-e^{2})^{1/2}}{(2\pi G)^{1/3}}$

And planetary density (transit) $\rho_p = \frac{3^{1/3}}{2\pi^{2/3}G^{1/3}}\rho_{\star}^{2/3}R_{\star}^{-1}TD^{-3/2}P^{1/3}K(1-e^2)^{1/2}$

Imagine a solar-like star:

With a transiting exoplanet: ΔF/F=0.0165 (~TD of HD209458 b)

And with:

• $\boldsymbol{\theta}$ =1 mas, T_{eff} = 5800K, 1 M_{\odot}, 1 R_{\odot}

Brown et al. 2001

- → We get 1.25 R_{Jup}
- θ =1 mas, T_{eff} = 5800K, 1 M_{\odot}, 1 R_{\odot} \rightarrow 0.93 R_{\odot}

→ We get **1.16 R_{Jup}** (-7%)

Imagine a solar-like star:

With a transiting exoplanet: $\Delta F/F=0.0165$ (~TD of HD209458 b)

And with:

Brown et al. 2001

→ We get 1.88 RJup

• θ =1 mas, T_{eff} = 5800K, 1 M_{\odot}, **1.5 R_{\odot} \rightarrow 1.4 R_{\odot}**

→ We get **1.75 R**_{Jup}(-7%)

Imagine a solar-like star:

With a transiting exoplanet: $\Delta F/F=0.0003312$ (TD of 55 Cnc e)

And with:

- $\theta = 1 \text{ mas}, T_{eff} = 5800 \text{K}, 1 \text{ M}_{\odot}, 1 \text{ R}_{\odot}$
 - → We get **1.98** R_{\oplus}

Bourrier et al. 2018

• θ =1 mas, T_{eff} = 5800K, 1 M_{\odot}, 1 R_{\odot} \rightarrow 0.93 R_{\odot}

→ We get **1.85 R**_⊕(-7%)

Imagine a solar-like star:

With a transiting exoplanet: $\Delta F/F=0.0003312$ (TD of Cnc e)

And with:

- $\theta = 1 \text{ mas}, T_{eff} = 5800 \text{K}, 1 \text{ M}_{\odot}, 1.5 \text{ R}_{\odot}$
 - → We get **2.98** R_{\oplus}

Bourrier et al. 2018

θ =1 mas, T_{eff} = 5800K, 1 M_☉, 1.5 R_☉ → 1.4 R_☉

→ We get **2.78 R**_⊕ (-7%)

Summary

ΔF/F	1 R⊙	0.93 R ⊙	1.5 R ⊙	1.4 R ⊙
0.0165	1.25 R _{Jup}	1.16 R _{Jup}	1.88 RJup	1.75 R _{Jup}
0.0003312	1.98 R⊕	1.85 R⊕	2.98 R⊕	2.78 R⊕
	823 km		1274 km	

.

IMPACTS ON EXOPLANETARY COMPOSITION

M=M_Earth

Valencia et al. 2013 (Bulk Composition of GJ 1214b and Other Sub-Neptune Exoplanets)

EXAMPLE: GJ504

 $\theta = 0.71 \text{ mas}$

 $T_{eff} = 6200 \text{ K}$

Observations with VEGA/CHARA

Spot of 4200 K, two filling factors (7 and 22%)

→ Could the dispersion in the V^2 measurement be due to stellar spots?

Bonnefoy et al. 2018 using COMETS (Ligi et al. 2015)

R. Ligi - PLATO Limb-darkening Conference - Granada

EXAMPLE: GJ504

 $\theta = 0.71 \text{ mas}$

 $T_{eff} = 6200 \text{ K}$

Observations with VEGA/CHARA

Spot of 4200 K, two filling factors (7 and 22%)

→ Could the dispersion in the V^2 measurement be due to stellar spots?

- The V² curves with and without a spot can be mixed → need a follow-up in time
- Effects at low V²

Bonnefoy et al. 2018 using COMETS (Ligi et al. 2015)

R. Ligi - PLATO Limb-darkening Conference - Granada

Model

Spots, convection and transiting planets signatures can be mixed up in the CP.

Chiavassa et al. 2014 Using OPTIM3D

1.0000 β Oph 0.2371 0.0562 0.0133 ≥ 0.0032 0.0007 0.0002 0.0000 0.0000 50 100 150 200 250 300 0 Baseline [m] σ units Residual in 100 200 250 300 50 150 0 Baseline [m] 200 100 Closure Phase [°] -100.

Observations with MIRC/CHARA of K Giant stars

Departure from $0 \pm \pi \rightarrow$ signature of convection Correlated with gravity?

Chiavassa et al. 2017a

R. Ligi - PLATO Limb-darkening Conference - Granada

-200

200

300

250

Maximum baseline [m]

The granulation patterns affect the photometric measurements (transits):

- timescale of granulation (~10 min) < timescale of transit (up to hours)
- Occultation of local regions of the photosphere with diverse surface brightness

The granulation patterns affect the photometric measurements (transits):

- timescale of granulation (~10 min) < timescale of transit (up to hours)
- Occultation of local regions of the photosphere with diverse surface brightness
- Granulation affects the photon noise (up to 3% noise)
- 2. Stronger fluctuations for larger planets and optical wavelengths
- 3. Radius fitting: variation of 0.47% to 0.90% in the planetary radius (Sun and terrestrial planet)

1.0

0.5

0.0

-0.5

[Rsun]

R. Ligi - PLATO Limb-darkening Conference - Granada

Sun with terrestrial planet

CONCLUSION

Bonnefoy et al. 2018

5

Taking into account all the effects simultaneously is necessary.

10

<u>≩</u> 10^{-:}

Squared

10

10

(sigma)

But is it possible?

Different signatures between the limbdarkening and stellar spots

Kervella et al. 2017

CONCLUSION

Solution 1: current imaging?

- not possible on all type of stars
 → use benchmarks stars?
- some discrepancies between techniques.

Solution 2: new instruments

- SPICA/CHARA (c.f. Denis's talk)
- MIRCX/CHARA

Solution 3: Follow-up in time, multi-techniques?

Roettenbacker et al. 2017

R. Ligi - PLATO Limb-darkening Conference - Granada

3950

THANK YOU FOR YOUR ATTENTION